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Abstract

For the normal cumulative distribution function: ®(x) we give the
new approximation 2**(-22**(1-41**(x/10))) for any x>0, which is very
simple (with only integer constants and operations - and / and power
elevation **) and is very simply explicitly invertible having 1 entry of x.
It has 3 decimals of precision having absolute error less than 0.00013. We
compute the inverse which approximates the normal quantile function,
or probit, and it has the relative precision of 1 percent (from 0.5) till
beyond 0.999. We give an open problem and a noticeable bibliography.
We report several other approximations.
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1 Introduction

This paper deals with the approximation of 2 special functions, ®(x) and ¢,.
Let’s remember that ®(z) and its inverse ¢, := ®~!(a) play a central role in
Statistics, essentially as a consequence of the Central Limit Theorem.

Papers [11] and recent [24] list several approximations of ®(x), which were
published in literature directly as approximations, or bounds, for that func-
tion, or are immediately derived from approximations or bounds for related
functions (see Remark 8 below), and give new ones.

Remark 1. Though computers now allow to compute them with arbitrary
precision, such approximations are still valuable for several reasons, includ-
ing to catch the soul of the considered functions, allowing to understand at a
glance their behaviour. Furthermore, here we produce only explicitly invertible
(and, in fact, simply) approximations, which allow to keep coherence working
contemporarily with the considered functions and their respective inverses.
Let’s add, finally, that despite technologic progress, those functions — of wide
practical use — are not always available on pocket calculators.

Remark 2. The research about approximating ®(z) floats among:
e exactness, but requiring limits, as series and continued fractions
e width of domains of approximation (usually x > 0 but not always)
e precision of approximations, but affecting their simplicity
e simplicity of approximations, but affecting their precision:
o there are few and/or short decimal constants
¢ if possible there are no decimal constants
e explicit invertibility by elementary functions.

Remark 3. The invertibility generates this categories:
(a) not explicitly invertible
(b) explicitly invertible solving a quartic equation
(c) explicitly invertible solving a generic cubic equation
(d) explicitly invertible solving a particular cubic equations 23+ azx+b =0
(e) simply explicitly invertible solving a quadratic (or biquadratic) equation
(f) very simply explicitly invertible, with only 1 entry of x.

Remark 4. Some special functions — among which those we consider in this
paper — are monotonic and then invertible, though not by elementary functions.

Remark 5. Of course the inverse of an approximation of an invertible func-
tion f is an approximation (how good, it has to be seen) of the inverse of f.
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Remark 6. Usually the approximations of ®(x) are not designed to be ex-
plicitly invertible by means of elementary functions, but sometimes they are,
solving cubic or quartic equations (after obvious substitutions) or rarely in
simpler manners.

Remark 7. As well known, it is possible to explicitly solve cubic and even
quartic equations, by complicate formulas, but it is not a standard procedure in
usual mathematical practice. (In literature, such explicit invertibility usually
is not even stated when presenting the approximations of ®(x)).

2 Preliminary Notes

Remark 8. Similar things as in Remarks 1-7 may be said for the functions
erf(z), erfc(x) and Q(x) we are going to define.

Definition 1. (Most standard; unluckily there are ambiguities in literature).
Normal cumulative distribution function:

O(z) := /x ! e dt (1)

Error function:

Q-function:
too ] —t2

O(x) = / N (3)

Complementary error function:

erfe(x) = ; + /;OO \/Q%e_ﬁdt . (4)

Remark 8. Mutual relations, holding for any z € IR:

O(z) = ; + ;er f(\%) (5)
erf(z) = 20(xv2) — 1 (6)

Q) =1 (x) 7)
erfe(z) :=1—-erf(zx) (8)

Remark 9. We wrote := both in (3) and (7) because both are used as def-
initions in literature. We wrote := in (8) because that is usually used as
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definition, and not (4).

Remark 10. The approximation of ®(z) for > 0 and of its inverse for
0<a< % are sufficient because of symmetries:

O(—z)=1— () Ve € R 9)
le—a = _¢a Va € ]0, 1[ (10)

3 Our Results

3.1 New Approximation of ¢(z)

Denoting by |e(x)| the absolute error and by e,(x) the relative error, we give
the following approximation:

o1 —41%/10 |5(.CC)| < 1281074

(4) @(x) =27 Ve >0

e, (z)] < 1.66 - 10~

Let n(x) be the approximation of ®(x) considered in Formula (A):

n(z) = 272"

The function 1.3-107* — |®(x) — n(z)] is positive for 0 < z < 5 as may be seen
by plotting it (see Figures 1 and 2). All the graphs may be obtained by profes-
sional software Mathematica™ or for free at the site www.wolframalpha.com:

for the considered!) case, write Plot]
1.3107(-4) - Abs[1/2+(1/2) Erf[x/Sqrt[2]] - 27 (-22" (1 - 41" (x/10)))],{x,0,5}].

LAll graphs may be obtained by these instructions, using as options (for example)
WorkingPrecision -> 100, PlotStyle -> Black :

phi[x_] = 1/2+ (1/2) Erf[x/Sqrt[2]]

iphifee.] = Sqrt[2] InverseErf[2 « - 1]

PHI41[x] = 2/(—22"(1 — 41" (x/10)))

iPHI41[o] = (10/Log[41]) Log[ 1 - (Log|(-Log[a])/Log|2]])/Log[22]]

Fig. 1 : Plot[{0, 128/10"6 - Abs[PHI41[x] - phi[x]]}, {x, 0, 5}, (options)]

Fig. 2 : Plot[{0, 128/10"6 - Abs[PHI41[x] - philx]]}, {x, 2.6, 2.8}...

Fig. 3 : Plot[{0, 166/10"6 - Abs[(PHI41[x] - phi[x])/phi[x]]}, {x, 0, 5}...

Fig. 4 : Plot[{0, 166/10"6 - Abs[(PHI41[x] - phi[x])/phi[x]]}, {x, 0.16, 0.18}...

Fig. 5 : Plot[{ 0, 5/1000 - Abs[iPHI41[x] - iphi[x]]} ,{ x, 0.5, 0.9926}...

Fig. 6 : Plot[{0, 5/1000 - Abs[iPHI41[x] - iphi[x]]}, {x, 0.9924, 0.9926}...

Fig. 7 : Plot[{0, 1/100 - Abs|(iPHI41[x] - iphi[x])/iphi[x]]}, {x, 0.5, 0.99909}...
Fig. 8 : Plot[{0, 1/100 - Abs|(iPHI41[x] - iphi[x])/iphi[x]]}, {x, 0.99907, 0.99909}...
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For x > 5 let’s consider that it is ®(5) = 0.9999997... and ®(z) — 1 and P is
increasing, then

(Vx> 5) 11— ®(x)| < 107°. (11)
It is, for x > 5,
10 1 log(1 —107)
5> 3.6378... = ——log (1 — 1
r=oz log 41 og( log 22 © ( —log 2 ))

101og; (1 — logy,(—log,(1 — 107%))) <
log; (1 — logyy(— logy(1 — 107%))) < /10
1 — logy,(—log,(1 — 107%)) < 41%/10
10895 (—logy(1 — 107%)) > 1 — 41%/10
log,(1 — 1071) < —221-41*"°

|10t < g2
—gg1-117/10 —4
0<1-2 < 10
that is to say
(Vo >5) |1 —n@)| <107 (12)

By (11) and (12) it is
(Vo >5)  |®(z)—n(z)] < [1—-&(@)|+|1—n(z)] <107°+107* < 1.3-107"%

Then, for the relative error of Formula (A), for 0 < z <5, see Fig. 3 and Fig.
4, and for z > 5 it is ®(z) > 0.9 (see above) and then

/1 12/10

g-22t-0 g g-221-1" g 1.310~4
T T R

Fig. 1 Absolute error [PHI41] Fig. 2 Its zoom [PHI41Z]
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Fig. 3 Relative error [PHI41R] Fig. 4 Its zoom [PHI41RZ]
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3.2 Inversion: Approximation of ¢,.

Remembering Remark 5, inverting (A), and still denoting by |e(x)| the absolute
error and by €(x) the relative error, we give the following approximation of the
normal quantile function ¢, = ®~!(«):

le(a)| <5-1073 Ya €[0.5,9925]

(a) o~ 22 10g(1_10g((—}z§g%/1og2)>

ler ()| <1% Va €[0.5,0.99908]

For the absolute error of (a) see Figures 5 and 6. For the relative error of (a)
see Figures 7 and 8.

Fig. 5 Absolute error [iPHI41] Fig. 6 Its zoom [iPHI41Z]
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0001 [
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Fig. 7 Absolute error [iPHI41R]  Fig. 8 Its zoom [iPHI41RZ]
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00061 000002 [

0.004 - 0.999075 0.999080 0.999085 0.999090

0.002 - —0.00002 |-

—0.00004 |-

4 Conclusions

In this paper for the normal cumulative distribution function ®(x) and the
normal quantile function ¢, respectively we gave these very simply explicitly
invertible (with 1 entry of z) corresponding approximations:

12/10

(A) ®(z) ~ 272" Ve >0

(@) ¢o =~ lolg(illog(l— log((—}gigg/logQ)) 05<a<l
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As quantified more precisely in Sections 3.1 and 3.2, the approximation (A) of
() grants abundantly 3 decimals of precision (having absolute error less than
0.00013), is very simple — with only 1 entry of x — and very simply explicitly
invertible, and the inverse (a) has essentiallly the same characteristics, giving
an approximation of the normal quantile function ¢, which maintains the 1%
precision (from 0.5) till 0.999777

In the end we remember that by the symmetry Formulas (9) and (10) the
approximations of ®(z) for x > 0 and of ¢, for 0.5 < «a < 1 are sufficient.

Remark 11. Because of the mutual relations (see Remark 8) among the func-
tions ®(z), erf(z), Q(z) and erfe(z), to approximate one of them is equivalent
to approximate the others.

We searched in a wide literature approximations published not only for ®(z),
but also the approximations of ®(z) implicitly contained in the approxima-
tions of the other 3 functions.

Remark 12. We will report other’s Author’s Formulas in a standard format.
This allows easy comparison.

We use x as independent variable. We write ®(x) ~, and always consider both
absolute and relative errors, in absolute value, and write respectively |e(z)| and
le-(z)]. Authors not always report both. And they write them with different
precisions. We found and wrote those errors with 2 digits after decimal point,
in the form a.bc- 107",

Of course any function may be written in several ways. We did our best in
reporting other Author’s formulas, sometimes changing the formal appearance.
In particular

; + ;\/ 1—ef@ = 05+05(1—expf(x))® = 1+(1- szf(x))

and we will write in the first way whenever possible.

N[

Remark 13. The most recent approximation of ®(x) we have found in liter-
ature is in paper [24] (2014), which gives this new approximation

22

1 e 2
V27 0.226 4+ 0.642 + 0.33V22 £ 3

for which we found |e(z)] < 1.93-107* and |&,(z)| < 3.86-107*, not explicitly
invertible. The same paper lists 16 other approximations of ®(x); the last is

22 4 10.147 %
1 . 2 14014722
+3 l—e 2 (13)

O(x) ~1 x>0

O(x) ~ ;
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holding for z > 0, for which we found |e(z)] < 6.21 - 107° and |e.(z)| <
6.30 - 107°, originally published in [109] as

0 240.14722

erf(x) ~ \/1 — e ¥ 1roman? Ve > 0. (14)

Both (13) and (14) are explicitly invertible, essentially by solving a biquadratic
equation, after obvious substitutions, just as the following improvements of
(13) which we already made available on the net in [95]

11 ) 17402 le(x)| < 4.00-107°
q)($> ~ 5 -+ 5 1 — e ¥ 26.694+222 Ve > 0
ler(z)| < 4.53-107°

and in [94]

5
1 1 —1.273545722 —0.0743968z4 ‘8<$)‘ <114-10
q)(q;) ~ 5 + 5 1 — @2+0.148093122+0.00025802% Yo > 0.

e ()] < 1.78 - 1070 B

Both the above improvements reach 4 decimals of precision.

Remark 14. As far as we know, the most recent new approximations (all of
2013) of Q(x) or erf(x) or erfc(z) (from which one could immediately obtain
approximations of ®(z)) are this double inequality

22
2

1 2 a2 1 2
————/—¢ 2 <Qr) L —F—/—¢
x+¢m\ﬁ —Q()—m\/;

in [19] (originally published for \/ge_éQ(x), and notice that the lower bound
is of [10]), this bound

1 ]_ 7$2/2
<
T V21 V1 + 22
in [39] (year 2013, originally published for v/27Q(x)) and a family

Q(x)

Qo) < T e
x
of upper bounds in [41] (year 2013 too) and this family
Q(z) > Sr_yap e

of lower bounds in [42] (year 2013 too), and from those lower and upper bounds
one could obtain approximations of ®(z) which are not explicitly invertible by
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elementary functions. Those approximations are especiallly valuable not only
because bounds, but also for little relative errors for the function QQ(x) for
great values of x. (Notice that Q(x) — 0).

Remark 15. As far as we know, the most recent new approximation of ®(x)
or Q(z) or erf(x) or erfc(x), having 1 entry of z, is this

®(z) ~ 1 —0.24015 ¢~ 056167
originally published as
erfe(vr) ~ XN jare ™ N:=1 a; = 0.4803; b=1.1232

in [78] and [79] (both year 2012); (then the Authors give other approximations,
with 2 and 3 entries of ). Clearly that approximation is not intended to min-
imize the absolute error, which in 0 is about 0.52 for erfc(x) (and 0.26 for
the derived approximation of ®(x)); and in fact its quality is the little relative
error for the function er fc(x) for great values of x. (Notice that er fc(x) — 0).

Another recent (2009) approximation of ®(z) (or Q(z) or erf(x) or erfc(x))
having 1 entry of z is this of [11]

1
O(x) ~ (= r € IR
for which we found |e(z)| < 9.49 - 1073 and |e,(x)| < 1.35- 1072 it is simple
and very simply explicitly invertible, but not so precise; the same paper gives
also this approximation

1
O(x) ~ r € IR

| + 6—0.07056x3—1.5976x

for which we found |e(x)| < 1.42-107* and |e,(z)| < 2.08 - 107*, which is
explicitly invertible solving a particular cubic equation.
Both the approximations have the quality of holding on the whole IR.

Remark 16. (Conclusions) As far as we know, before our Formula (A), the
most precise (with respect both to the absolute error and to the relative error)
approximation of ®(x)

(cv) published as approximations or bounds for ®(z) or Q(x) or erf(x) or erfe(z)
(B) holding at least for x > 0 (and, then, ®(—z) =1 — ®(x))

(7) defined by a single expression (or, not piecewise defined)

(0) very simply explicitly invertible, with 1 entry of x
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was this of [6]
1 1 =
b(2) ~ S + 5 1—eVE® >0

for which we found |e(z)] < 1.98 - 107 and |e,.(z)| < 2.04 - 1072, The Author
provides also the inverse, approximating the normal quantile function ¢,.

Our Formula (A) approximating the normal cumulative distribution function
®(x), having |e(z)] < 1.28-107* and |e,(z)| < 1.66 - 10™*, appears really quite
noticeable for simplicity, precision and explicit invertibility.

That makes also quite valuable our Formula (a) for the approximation of the
normal quantile function ¢, inverse of ®(x).

Remark 16. (Open problem). Modify constants to approximate erf(x)
applying erf(x) = 2®(2+/2) — 1 and our Formula (A), possibly avoiding /2.
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